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The upper limit to the creep life of solids 
under a tensile force 

B. B U R T O N  
Central Electricity Generating Board, Berkeley Nuclear Laboratories, Berkeley, 
Gloucestershire, UK 

Creep failure generally occurs either by the attenuative loss of area as f low proceeds 
(geometrical failure) or by the development of internal cavities. The former mechanism 
dictates the ultimate creep life of a material. Criteria are developed for this upper limit 
to life for a variety of creep mechanisms. The effects of both primary creep and necking 
are discussed and a brief comparison is made between failure criteria for cavitation failure 
and geometrical failure. 

1. Introduction 
When a solid fails to creep, the failure mechanism 
falls into one of two main categories. The first, 
called in this paper geometrical creep rupture, 
GCR, depends only on the geometry of flow and 
on the form of the flow equation. In tension, 
this type of failure occurs simply because cross- 
sectional area is lost during flow in order to 
preserve constant volume. Flow may be uniform 
almost up to the point of failure but is often 
associated with local necking towards the end 
of life. Failure strains by this mechanism are 
relatively high, simply because significant changes 
in geometry are required. 

The second main type of failure process occurs 
in polycrystalline materials by the nucleation, 
growth and coalescene of cavities on grain bound- 
aries. These cavities may be rounded in appearance, 
indicating that diffusion processes are important; 
or they may be wedge shaped and typical of a 
growth which involves gross separation or relative 
movement of adjacent grains. The relative impor- 
tance of the two cavity types depends on micro- 
structures, stress and temperature [1 ]. 

A substantial amount of effort has been directed 
towards the understanding of the precise micro- 
scopic details of cavity growth, including consider- 
ations of geometry, stress re-distribution and 
surface diffusion aspects; although relatively little 
attention has been given to the (albeit much 
simpler) criterion for geometrical creep rupture. 
Such a criterion is however very important since it 

0022-2461/82/082441-08 $03.46/0 

represents the ultimate creep life of any solid. 
GCR occurs when the area has decreased by flow 
to such an extent that it can no longer carry the 
applied load. If any other processes are operating 
(for example cavitation or necking) they can only 
shorten the creep life. No mechanism can extend 
it. An extension in creep life can only be achieved 
through a change in the flow equation. 

Thus the GCR criterion defines an upper limit to 
creep life and represents a useful first step in ana- 
lying creep failure data. If experimental data falls 
too close to these predictions (and they often do), 
then further involved speculations about the failure 
mechanism may not be necessary. Even if cavities 
are present, they need not contribute significantly 
to the overall failure process in many instances. 

2. Geometrical creep rupture 
When any solid undergoes steady state irreversible 
flow under the action of an applied stress, r, the 
flow rate, ~,  is given by the relationship 

= X ~ (~ - ~ 3  hi. (1) 

This equation represents the sum of all mechanisms, 
i, operating, where al, ~i and nl depend on the 
mechanism. For crystalline solids 1 ~< n ~< 5 
is a numerical constant, /3~>0 is a threshold 
stress below which steady state flow does not 
occur and a contains physical, thermodynamic 
and structural parameters appropriate to the 
material. Some examples for crystalline materials 
are shown in Table I. 
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Geometrical creep rupture depends on the 
parametric form of  the flow equation, Equation 1. 
It  is appropriate to solids creeping under the 
action of  a constant tensile force and arises because 
of  the unstable nature of  such flow. For this type 
of failure a rigorous theoretical upper bound to 
the creep life of any solid can be defined. 

For a unaxial tensile force, F, the creep equation 
can be written as 

de 1 d/ 1 dA (~_ o)n 
- - - a - -  o ( 2 )  

dt l dt A dt 

where (de~dO is the instantaneous creep rate, l 
and A are the specimen length and area and Oo 
is a threshold stress appropriate if the material 
is a dispersion hardened crystal. It is often close 
to the Orowan stress, Gb[X, where G is the shear 
modulus, b is the Burgers vector and X is the inter- 
particle spacing. The rate of  loss of  specimen 
area is thus 

- A " - '  1 -  . ( 3 )  

This equation can be integrated, for a constant 
applied force, F, using the boundary conditions 
A = A o at t = 0 to give the variation of area with 
time. Thus 

naFnt (n +] - -  1)! 
(At/Ao) n = 1 + n  2 s 

A~ j=~ n !/! (n +j )  

x (Oo/Of" [ I - - (A t /Ao)n+J ] .  (4) 

The failure condition is when the ratio of  the 

creep ratio at time, t, to the steady-state creep rate 
approaches infinity. That is when (At/Ao)-+O. 
The failure condition is thus 

n ~ " I 
ni t f  = 1 -  l +n2S  "(n+~---I)!  , 

i~  n!j!(n + j) 
(s) 

where ~ and o are respectively the initial creep 
rate and the initial stress. 

3. The limiting cases 
The flow of solids follows general equations which 
are termed viscous flow, power law creep and 
threshold flow. These are now considered generally 
and specific examples are then given for poly- 
crystalline metals. 

3.1 .  V i scous  f l o w ,  ao = 0, n = 1 
This type of flow has the form 

i = a lo ,  (6) 

where al can be obtained from Table I. Substi- 
tuting o0 = 0 and n = 1 into Equation 4 gives the 
variation of area with time: Equation 2 then gives 
the variation of creep rate with time. The s t ra in -  
time curve is then obtained by integration and is 
given by 

i t  = -- In (1 -- i t) ,  (7) 

or, in terms of  creep rate 

i t  1 
i - 1 - - i t  (8) 

T A B L E I Approximate  creep parameters  in the equat ion ~ k T / D E G b  = A e ( e / G )  - -  (ao /G)  n 

Creep n A e cr 0 D E Reference 

1 5 w  D G 
Diffusion creep: Single phase 1 lO (b /d )  2 Small D L 1 + - -  - -  - -  [2] 

7r d D g 

15 w D G Dispersion hardened 1 lO(b /d )2  Proportional to D L 1 + - -  --  - -  [2] 
volume-fraction n d D L 

G )  Dp Recovery creep: Single phase 3 1 0 D L 1 + DL [ 1 ] 

Dispersion hardened 3 1 b / X  D L 1 + ~ [ 1 ] 

Solute drag 3 1 0 D s [ 1 ] 

Superplastic Duplex structure 1 - 3  100 Interpretat ion Composi te  alloy [3] 
varies (see diffusion 
text)  coefficient 

X is the  inter-particle spacing; d is the grain size; D L is the  lattice diffusivity; D G is the grain boundary  diffusivity; 
D S is the  solute diffusivity; and Dp  is the  dislocation pipe diffusivity. 
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The failure time is when this ratio becomes infinite, 
that is: 

~'tf  = 1, (9) 

where tf is the time to failure. 
In principle, viscous solids should flow almost 

indefinitely since the rate of reduction of area, 
--(dA/dt),  is independent of area. Thus, even 
incipient necks should not develop since the 
material can maintain a constant ratio of neck 
size to component size independent of specimen 
strain. Such behaviour is typical of glasses at 
high temperature, amorphous materials like pitch, 
and certain plastics. 

Polycrystalline materials can also deform in 
a way in which creep rate and stress are linearly 
related. This mechanism is diffusional creep 
(see Table I). In principle these materials should 
also exhibit exceptional ductilities. However in 
practice, the rates of strain are often so low that 
the predicted failure times are very long. During 
this time grain coarsening often occurs, thus 
reducing rates still further, and in certain materials 
(particularly ceramics), cavity development may 
contribute to failure. (It should also be noted that 
if the cross-sectional area does decrease significantly 
during diffusional flow, the corresponding stress 
increase may cause dislocation processes to become 
operative in the later stages.) For metals in service, 
rupture by this mechanism is not to be expected 
by diffusional creep. 

3.2. Power-law creep, Oo = 0, n > 1 
The power-law creep flow equation has the form 

i = a2o n. (10) 

Following a similar procedure, the relationships 
between strain and time are found to be 

1 
et - In (1 -- n i t )  (11) 

/2 
and 

i t  = e/(1--  nit). (12) 

The failure criterion is once again when ( e t / e )  -+ oo 
that is: 

n i t f  = 1. (13) 

Thus, the time to failure by the GCR mechanism 
for any particular creep rate depends only on the 
stress index, n. 

Pure metals at intermediate stress levels creep 
by a power law mechanism. When dislocation 

glide is much easier than climb, creep is diffusion 
controlled (recovery creep) and obeys the relation- 
ship (given in Table I): 

~kT Ac 1 ( 1 4 )  
o o b  -5-j' 

where Dp is the dislocation pipe diffusion 
coefficient. The creep constant A e ~ 1. Thus the 
stress time to rupture relationship is 

k T  

t,  = nDGb(o/G)3 (15) 

when lattice diffusion gives the greatest con- 
tribution, and 

k T  
tf - n D p C b ( o / a )  s (16) 

when dislocation pipe diffusion predominates. 
Since the activation energy for pipe diffusion is 
less than that for lattice diffusion and the stress 
dependence is different in Equations 15 and 16, 
a transition in the fracture criterion is expected 
with Equation 16 being appropriate at lower 
temperatures and higher stress levels. 

In alloys which are strengthened by solutes, 
or in pure metals which have an inherently low 
stacking fault energy, creep rates are lower than 
those predicted by Equation 14. That is, the 
creep constant Ac is lower in both the above 
types of material, and in addition for solute drag 
controlled creep the transition to pipe diffusion 
is suppressed. This is because dislocation movement 
is impeded by the drift of the solute "atmosphere" 
around dislocations and such solute movement 
has to occur by lattice diffusion. Thus tf by the 
GCR mechanism is longer for these materials and 
this once again emphasizes that the time to failure 
depends only on the form of the flow equation. 

3.3. Threshold f low, Oo > 0, n ~> 1 
Certain materials exhibit a threshold stress below 
which flow does not occur. When n = 1 this type 
behaviour is known as Bingham flow. In poly- 
crystalline materials it is typical of diffusional 
creep when a dispersion of refractory second phase 
particles are present on grain boundaries and is 
also characteristic of a range of non-metallic 
solids. From Equation 5, the failure criterion is: 

i tf  = ( 1 - - ~ )  { l + _ ~ ( ~ j ) ( ~ f } .  (17) 

When n~> 1 the flow equation is typical of 
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dispersion hardened crystalline materials, where 
the threshold stress can be correlated with the 
Orowan stress Gb/X, where X is the dispersion 
spacing. In this case the flow behaviour is more 
complex. Equation 5 represents the failure criterion 
which is shown graphically in Fig. 1. The para- 
meter netp is plotted against stress, normalized 
in terms of the threshold stress a/ao for various 
values of n. The curves become asymptotic to the 
criterion n~tf = 1 at large values of applied stress 
and equal to net~ = 0 at a = a0. 

Using the expression for the creep of dispersion 
hardened crystalline materials given in Table I, 
then 

tf - nDGb [ ( o - - ~ ] '  (18) 

where f is the summation of Equation 5 whose 
values can simply be obtained from Fig. 1. The 
failure times for a dispersion hardened material 
are shown in Fig. 2. The calculation is for values 
of go appropriate to an Orowan stress Gb/X for 
interparticle spacings of 0% 10, 3 and 1/~m respec- 
tively. It is clear that the rupture life is extended 
dramatically by the presence of second phase 
particles which are effective in providing a thres- 
hold stress. 

3.4. Superplastic flow 
It has been noted that whilst materials deforming 
by diffusional creep should in principle extend 
indefinitely, in practice they often do not owing 
to other contributing factors. The GCR criterion 
does, however, have particular significance in 
superplastic flow. This type of flow, like dif- 
fusional creep, occurs at relatively low stress levels. 
Whilst the mechanism is not fully understood, it 
is clear that diffusional creep plays an important 
role. The stress dependence of superplastic creep 
does not usually approach the limiting value 
of unity, but its value is sufficiently low that 
the product ctt is high enough to give rise to 
extensive ductility by the GCR mechanism. 

The importance of the GCR mechanism in 
determining ductility can clearly be seen by a 
closer inspection of the stress dependence of 
superplastic creep. This dependence is sigmoidal 
and is represented schematically in Fig. 3. At 
high rates of strain, behaviour is characteristic 
of recovery creep processes where creep rate 
and stress are related by a power law. Thus, 
in this region etf has a relatively low value. This 
value has the limit 1In for the GCR mechanism 
but may be even lower if cavitation failure mech- 
anisms are operating. At lower stresses behaviour 
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Figure 1 Variation of the creep rupture 
parameter with stress for any flow 
equation of the form ~ a ( a -  ao) n. tf is 
the failure time. 
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Figure 2 Variation of  the normalized t ime to failure 
DGbtf/kT with stress for a dispersion-hardened crystal 
containing a range of  particle spacings. 

is more complex. The stress dependence decreases 
and then increases once more at the lowest stress 
levels. This behaviour has been interpreted in 
terms of the operation of two independent mech- 
anisms, or alternatively as being typical of a 
material which exhibits a threshold stress. These 
alternative explanations have important con- 
sequenes as far as the understanding of microspoic 
creep mechanisms is concerned; but for the 
present purpose which is concerned primarily 
with the geometry of flow, they are relatively 
unimportant. It is the overall flow characteristics 
of the material which are important in deter- 
mining the GCR criterion, not the microscopic 
details of the creep mechanism. Also shown in 
Fig, 3 is the variation of the parameter etC. The 
region of maximum ductility corresponds to the 
maximum value of this parameter. 

4. Creep failure by cavitation 
The main aim of this paper is to indicate the 

upper limit to creep life of a solid. GCR represents 
such an upper limit. If  any other failure mech- 
anism operates, creep life can only be shorter 
than this upper limit. No mechanism can extend 
it. Cavitation development on grain boundaries 
during creep is one mechanism which can shorten 
creep life. 

Diffusion cavity growth depends on a diffusive 
flux of vacancies from a stressed boundary to the 
surface of a suitable cavity nucleus on the boundary. 
If vacancies are being supplied by grain boundary 
diffusion (coefficient D a )  the radial growth rate 
of such a cavity has been calculated by Hull and 
Rimmer [4] to be: 

& 47rag2D G co 

dt  X r k T  (19) 

where YZ is the atomic volume, X the inter-cavity 
spacing, r is the radius and co ~ 2b is the boundary 
width. Since the development of this equation 
many refinements have been introduced (see the 
review of Beer~ [5] for example) which are 
beyond the scope of discussion in this paper. In 
essence, however, a failure time by cavitation 
can be arrived at by integrating the above equation 
to obtain an expression for the variation of cavity 
radius with time and writing the failure time as 
the time for the cavities to grow to a critical size. 
At a simple level this critical size may be assumed 
to be rein = X/2. That is, the material fails when 
the cavities touch. The material between the 
cavities starts to creep locally long before the 
above condition is reached, however, a more 
sophisticated criterion which includes a stress- 
dependent critical size is required. At this critical 
size, cavities begin to coalesce by the local necking 
or plastic opening of material between the cavities, 
and the cavitated boundary takes on the charac- 
teristics of a wedge-shaped crack. Once this 
situation obtains, opening continues by local 
plastic flow or gross movement of adjacent grains 
by a boundary sliding process. 

Once wedge-type cracks have formed, the 
residual creep life becomes exhausted in a way 
which resembles GCR. In GCR, cross-sectional 
area is being lost by bulk flow so that opposite 
faces of the specimen approach the specimen 
axis to preserve constant volume, whereas for 
wedge crack opening area is being lost internally 
by plastic opening and/or sliding. The point is 
that in both cases area is being lost by a process 
of plastic creep (or boundary sliding which is in 
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Figure 3 The sigmoidal variation of creep 
rate and stress shown schematically for 
a superplastic material. The creep mech- 
anism at low stresses may be interpreted 
in terms of two mechanisms called I 
and II or in terms of a threshold stress, 
a 0. The main point as far as GCR is 
concerned is that the apparent stress 
exponent (dlog a)/(dlog d) reaches a 
maximum at some intermediate value 
of stress. 

itself related to creep), so that the failure criteria 
are fairly similar. An approximate calculation of 
the time to failure by boundary sliding is 
presented in the Appendix. 

5. The influence of primary creep 
The calculations are concerned entirely with the 
equations for steady-state creep. Real materials 
usually show a transient stage which may persist 
to strains of  0.1 or more. As already mentioned, 
primary creep is of  little importance in the dis- 
persion hardened material but is significant for 
the softer material. The development of  overall 
creep strain with time can be described by the 
expression: 

e = eo + e T  [ 1 - - e x p ( - - m t ) ]  + i ss t ,  (20) 

where eo is the initial or instantaneous extension 
on loading, ew is the total primary creep strain, 
rn is the primary creep rate constant, ess is the 
steady-state creep rate at constant stress and t is 
the time. The rate of  creep is obtained by differen- 
tiating. Thus: 
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= m er  e x p ( - - m t ) +  ess. (21) 

Since the time to failure is a function of the flow 
rate, an effective rate of  creep,-e, can be calculated, 
given by 

tf  tf  
t~(e-) = rnew f e x p  (--mt)dt + essfs 

(22) 

Using the failure criterion: 

n (e - ) t f  = 1 (23) 

and the empirical relationship [3] : 

m = aess,  a = 10-+100 (24) 

gives the relationship between tf and ess to be 

a ~ s s t f  = - - l n ( 1 - ~  esst~n--1)eTn. (25) 

The numerical solution of  Equation 25 is 
shown in graphical form in Fig. 4, for different 
values of  eT ( = 0.1 and 0.2) and a (= 10 to 100). 
It is clear that materials showing extensive (large 
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Figure 4 The influence of primary creep on creep rupture. Typical parameters in the primary creep equations are shown. 

ew) or rapid (large m) primary creep will have a 
significantly reduced time to failure compared to 
that calculated from the steady-state rate. This is 
simply because they have spent a fraction of their 
lives deforming at fast rates and the failure time 
is only a function of rate and not of mechanism 
so long as the stress dependence remains 
unchanged. 

6. Discussion 
The t y p e  of rupture process considered in this 
paper is the simplest type which can occur during 
creep. It depends only on the attenuation of 
cross-sectional area which enables a constant 
specimen volume to be maintained during flow. 
The failure criterion is dictated solely by the 
overall characteristics, i.e., the parametric form 
of the flow equation and not by the microscopic 
details of some internal mechanism. The creep 
life which is calculated represents a rigorous 
upper limit to the creep life of solid, and the 
product netf may also be regarded as a ductility 
parameter. No material can exhibit a value of the 
parameter greater than unity. 

If  solids fail with a value of net~ less than pre- 
dicted in this paper, this may indicate that other 

fracture processes are operative. These other 
processes can be contributions by necking or 
primary creep. The necking contribution is not 
a separate failure mechanism; it simply reflects 
the fact that for power-law creep, the rate of loss 
of area (--dA/dt)  is in itself a function of the 
instantaneous area (Equation 3) so that any sur- 
face perturbation or incipient neck becomes 
increasingly exaggerated during subsequent flow. 
Similarly, primary creep gives rise to values of 
netf less than predicted by writing e as the steady- 
state creep rate. The shorter life simply arises 
since the specimen has spent a part of this life 
at a creep rate greater than the steady-state rate. 

Whilst necking and primary creep contributions 
are simply extensions to the attenuation mech- 
anism of rupture, internal void and crack develop- 
ment must be considered as mechanisms indepen- 
dent of this. These cavitation mechanisms depend, 
at least initially, on diffusive growth. They are 
thus likely in materials where the relative rates of 
diffusion of those of creep are high. Examples are 
the creep of solute drag controlled alloys, where 
dislocation movement if limited by the lattice 
diffusion solute atmospheres. In such alloy, 
relatively rapid growth of cavities can occur by 
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short circuiting diffusion and thus cavitation will 
become increasingly important at lower tem- 
peratures. Cavitation is also more likley in metals 
and alloys with low stacking fault energy. These 
alloys creep at reduced rates whilst the diffusive 
processes responsible for cavity growth are 
unaffected by SFE. Thus aluminium (high SFE) 
fails by GCR and never cavities. Silver, on the 
other hand, which has the same fcc structure but 
low SFE is often used as a model material to 
demonstrate cavity growth. 

7. Conclusions 
The simplest form of tensile creep failure occurs 
by the attenuation of cross-sectional area which 
is necessary to conserve material volume during 
flow. 

A failure criterion can be developed which 
relates the flow rate of the material to a failure 
time which represents the ultimate creep life 
attainable. 

The failure time may be less than this value 
if necking occurs or if  the material shows a primary 

creep stage. 
Failure by cavitation development is an inde- 

pendent mechanism to the geometrical rupture 
mechanism and may give rise to substantially 
lower creep life. However, if wedge-type cavities 
develop by grain boundary sliding, the failure 
criterion may be similar in form to that for geo- 
metrical failure since in both cases area is being 
lost in a way which depends on creep rate. 
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Appendix:  The failure time by wedge- 
crack opening 

A wedge-shaped crack of length c on a grain- 
boundary facet of length l and unit thickness 
is considered to be opening by a grain-boundary 
sliding process as indicated in Fig. A1. The opening 
rate of the crack, dc/dt, is assumed to be equal to 
the sliding rate of the boundary and the sliding 
rate itself to be related to the creep rate. Thus, 

de 
_ = ~ ,  (~J) 
dt 

where a is a constant containing angular terms. 
It is assumed to be unity in this calculation. The 
local creep rate is given by 
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FigureA1 Schematic diagram of a wedge crack opening 
by grain-boundary sliding. 

i = A c , (A2) 

where the term 1 --(el l)  accounts for the loss of 
cross-sectional area as the crack opens. The failure 
criterion is clearly 

etf = JCo[1 -- de - , 

where co is the initial crack length (assumed to be 
zero) and c~ -+ l is the crack length at the failure 
time, tf. This wedge-cracking criterion is only 
less than the GCR criterion by the factor 1 + 
(l/n),  which is about unity for large n. The impor- 
tant point to note is the parametrically similar 
form of the two criteria. They arise in both cases 
since creep rate is increasing because of loss of 
area (either total area by attenuation or by local 
internal cracking) and this loss of area in itself 
if controlled by the rate of creep. 
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